Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Biosystems ; 232: 105005, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37611860

RESUMEN

We propose a theoretical model to investigate the thermodynamics of single and coupled two-state ion channels, associated with mechanoelectrical transduction (MET) and hair cell biophysics. The modeling was based on the Tsallis nonextensive statistical mechanics. The choice for a nonextensive framework in modeling ion channels is encouraged on the fact that we take into account the presence of interactions or long-range correlations in the dynamics of single and coupled ion channels. However, the basic assumptions that support Boltzmann-Gibbs statistics, traditionally used to model ion channel dynamics, state that the system is formed by independent or weakly interacting elements. Despite being well studied in many biological systems, the literature has not yet addressed the study of both entropy and mutual information related to isolated or physically interacting pairs of MET channels. Inspired by hair cell biophysics, we show how the presence of nonextensivity, or subadditivity and superadditivity modulates the nonextensive entropy and mutual information as functions of stereocilia displacements. We also observe that the magnitude of the interaction between the two channels, given by a nonextensive parameter, influences the amplitude of the nonextensive joint entropy and mutual information as functions of the hair cell displacements. Finally, we show how nonextensivity regulates the current versus displacement curve for a single and a pair of interacting two-state channels. The present findings shed light on the thermodynamic process involved in the molecular mechanisms of the auditory system.


Asunto(s)
Células Ciliadas Auditivas , Canales Iónicos , Biofisica , Entropía , Transductores
2.
Biol Cybern ; 110(1): 31-40, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26721559

RESUMEN

Recently, we demonstrated the existence of nonextensive behavior in neuromuscular transmission (da Silva et al. in Phys Rev E 84:041925, 2011). In this letter, we first obtain a maximum-likelihood q-estimator to calculate the scale factor ([Formula: see text]) and the q-index of q-Gaussian distributions. Next, we use the indexes to analyze spontaneous miniature end plate potentials in electrophysiological recordings from neuromuscular junctions. These calculations were performed assuming both normal and high extracellular potassium concentrations [Formula: see text]. This protocol was used to test the validity of Tsallis statistics under electrophysiological conditions closely resembling physiological stimuli. The analysis shows that q-indexes are distinct depending on the extracellular potassium concentration. Our letter provides a general way to obtain the best estimate of parameters from a q-Gaussian distribution function. It also expands the validity of Tsallis statistics in realistic physiological stimulus conditions. In addition, we discuss the physical and physiological implications of these findings.


Asunto(s)
Potenciales Postsinápticos Miniatura/fisiología , Unión Neuromuscular/fisiología , Potasio/fisiología , Animales , Diafragma/inervación , Diafragma/fisiología , Funciones de Verosimilitud , Ratones , Distribución Normal , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA